Cortical instability drives periodic supracellular actin pattern formation in epithelial tubes.

نویسندگان

  • Edouard Hannezo
  • Bo Dong
  • Pierre Recho
  • Jean-François Joanny
  • Shigeo Hayashi
چکیده

An essential question of morphogenesis is how patterns arise without preexisting positional information, as inspired by Turing. In the past few years, cytoskeletal flows in the cell cortex have been identified as a key mechanism of molecular patterning at the subcellular level. Theoretical and in vitro studies have suggested that biological polymers such as actomyosin gels have the property to self-organize, but the applicability of this concept in an in vivo setting remains unclear. Here, we report that the regular spacing pattern of supracellular actin rings in the Drosophila tracheal tubule is governed by a self-organizing principle. We propose a simple biophysical model where pattern formation arises from the interplay of myosin contractility and actin turnover. We validate the hypotheses of the model using photobleaching experiments and report that the formation of actin rings is contractility dependent. Moreover, genetic and pharmacological perturbations of the physical properties of the actomyosin gel modify the spacing of the pattern, as the model predicted. In addition, our model posited a role of cortical friction in stabilizing the spacing pattern of actin rings. Consistently, genetic depletion of apical extracellular matrix caused strikingly dynamic movements of actin rings, mirroring our model prediction of a transition from steady to chaotic actin patterns at low cortical friction. Our results therefore demonstrate quantitatively that a hydrodynamical instability of the actin cortex can trigger regular pattern formation and drive morphogenesis in an in vivo setting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonmuscle Myosin II Generates Forces that Transmit Tension and Drive Contraction in Multiple Tissues during Dorsal Closure

BACKGROUND The morphogenic movements that characterize embryonic development require the precise temporal and spatial control of cell-shape changes. Drosophila dorsal closure is a well-established model for epithelial sheet morphogenesis, and mutations in more than 60 genes cause defects in closure. Closure requires that four forces, derived from distinct tissues, be precisely balanced. The pro...

متن کامل

Spatially periodic modulation of cortical patterns by 3 long - range horizontal connections

9 We analyze spontaneous pattern formation in a continuum model of primary visual cortex that incorporates spatially peri10 odic inhomogeneities in the distribution of long-range horizontal connections. These inhomogeneities reflect the underlying 11 crystalline-like structure of cortex, as exemplified by the distribution of cytochrome oxidase blobs. We first solve the linear 12 eigenvalue prob...

متن کامل

Arabidopsis formin3 directs the formation of actin cables and polarized growth in pollen tubes.

Cytoplasmic actin cables are the most prominent actin structures in plant cells, but the molecular mechanism underlying their formation is unknown. The function of these actin cables, which are proposed to modulate cytoplasmic streaming and intracellular movement of many organelles in plants, has not been studied by genetic means. Here, we show that Arabidopsis thaliana formin3 (AFH3) is an act...

متن کامل

Actomyosin contraction at the cell rear drives nuclear translocation in migrating cortical interneurons.

Neuronal migration is a complex process requiring the coordinated interaction of cytoskeletal components and regulated by calcium signaling among other factors. Migratory neurons are polarized cells in which the largest intracellular organelle, the nucleus, has to move repeatedly. Current views support a central role for pulling forces that drive nuclear movement. The participation of actomyosi...

متن کامل

mDia2 regulates actin and focal adhesion dynamics and organization in the lamella for efficient epithelial cell migration.

Cell migration requires spatial and temporal regulation of filamentous actin (F-actin) dynamics. This regulation is achieved by distinct actin-associated proteins, which mediate polymerization, depolymerization, severing, contraction, bundling or engagement to the membrane. Mammalian Diaphanous-related (mDia) formins, which nucleate, processively elongate, and in some cases bundle actin filamen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 28  شماره 

صفحات  -

تاریخ انتشار 2015